Programme & Abstracts

The Danish Microbiological Society Annual Congress 2019

11 NOVEMBER 2019

EIGTVEDS PAKHUS COPENHAGEN · DENMARK

www.dmselskab.dk

Index

Programme	4
Flash poster presentations	7
About DMS	9
Speakers' abstracts	11
Industry symposia	31
Poster sessions and Poster Index.	35

Programme

09.00	Registration, poster mounting and coffee			
	ROOM II Second floor		ROOM III Second floor	
10.00	Welcome and opening address by DMS President Carsten Suhr Jacobsen		Welcome and opening address by DMS Vice-president Trine Rolighed Thomsen	
10.15	[O01] Citizen science in syste applied microbiology Speaker: Preben Nielsen, Novo		for global hea	hesitancy – a major threat I th Mølbak, Statens Serum Institut
10.45	Coffee and exhibition $First \theta$	second floor		
		PARALLEL	SESSIONS	
	ROOM II Second floor	ROOM III Seco	ond floor	ROOM IV Second floor
	Biodiversity and biogeography Chair: Per Halkjær Nielsen, Aalborg University DMS co-chair: Trine Thomsen, Teknologisk Institut	Vaccines Chair: Anders University of C DMS co-chair: Burmølle, Univ Copenhagen	Copenhagen Mette	Microbial food web in soil Chair: Tim Urich, Universität Greifswald DMS co-chair: Carsten Suhr Jacobsen, Aarhus University
11.00	Chair introduction	Chair introduc	tion	Chair introduction
11.05	[O03] Microflora Danica meets Earth Microbiome Project Per Halkjær Nielsen, Aalborg University & Daniel McDonald, University of California, San Diego, USA	[O06] Preventing disease and antimicrobial use in animals by vaccination Anders Miki Bojesen, University of Copenhagen		[O09] Predatory bacteria in soil: key-stone taxa of microbial foodwebs? Tim Urich, Universität Greifswald, Germany
11.30	[O04] Project SoilTracker - solving crimes with soil- microbiodiversity Tobias Guldberg Frøslev, Centre for GeoGenetics, University of Copenhagen	[O07] Using vi viruses – pers future vaccine Allan Randrup University of C	pectives for es Thomsen,	[O10] Significance of micro- predator diversity in the rhizosphere Flemming Ekelund, University of Copenhagen
11.45	[O05] Atmospheric microorganisms in the Arctic Tina Santl-Temkiv, Aarhus University	[O08] Adjuvan immunologist secret to vacci requisite for s Dennis Christe Serum Institut	t 's dirty little inologist's uccess ensen, Statens	[O11] Patterns of microbiome predator communities at a global scale Stefan Geisen, Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO- KNAW
12.00	Flash poster presentations (see page 7)	Flash poster p (see page 7)	resentations	Flash poster presentations (see page 7)
12.15	Lunch Salon C, ground floor			
12.15	Exhibition First & second floor	r		
12.35	GENERAL ASSEMBLY Det Dar	nske Pasteur Sel	skab ROOM IV,	second floor
12.45	POSTER SESSION (EVEN NU	MBERS) SALON	B, ground floor	& first floor

12:35- 13:00	Bruker Symposium: ISO 16140-6 validation of Mal	di Biotyper (see p. 31) ROOM II	l, second floor
13:10- 13:35	Nordic Biosite Symposium: Standardizing microbiomics purification and analyses (see	- removing bias in collection, p. 31) ROOM II, second floor	
		PARALLEL SESSIONS	
	ROOM II Second floor	ROOM III Second floor	ROOM IV Second floor
	Big data and deep learning meets microbiology Chair: Mads Albertsen, Aalborg University DMS co-chair: Trine Thomsen, Teknologisk Institut	Novel antimicrobial therapies Chair: Ole Højberg, Aarhus University DMS co-chair: Rikke Louise Meyer, Aarhus University	The challenge of slow growing bacteria Chair: Peter Stougaard, Aarhus University DMS co-chair: Kasper Nørskov Kragh, University c Copenhagen
13.45	Chair introduction	Chair introduction	Chair introduction
13.50	[O12] Microbes inside and out Daniel Mc Donald, University of California San Diego, USA	[O15] ICARS - The International Center for Antimicrobial Resistance Solutions Robert Skov, Statens Serum Institut	[O18] Microbiological and pathogenesis features distinguishing Lyme disease and relapsing fever spirochetes Sven Bergström, Umeå University
14.15	[O13] Binning microbial genomes using deep learning Simon Rasmussen, University of Copenhagen	[O16] Fecal transplants – the ultimative probiotic for pigs? Nuria Canibe, Aarhus University	[O19] Tuberculosis – diagnosis from a laboratory point of view Dorte Bek Folkvardsen, Statens Serum Institut
14.30	[O14] Trash to treasure: exploring the wastewater system with high quality MAGs from large-scale Nanopore data Caitlin Singleton, Aalborg University	[O17] Local drug delivery to target biofilm infections Rikke Meyer, Aarhus University	[O20] Slow-growth and no-growth in natural environment Hans Røy, Aarhus University
14.45	Flash poster presentations (see page 7)	Flash poster presentations (see page 7)	Flash poster presentations (see page 7)
15.00	Coffee and exhibition $First \ \theta$ s	econd floor	
15.15	POSTER SESSION (UNEVEN NUMBERS) SALON B, ground floor & first floor		
15:15- 15:40	Leymus Genomics Symposur Long-read single molecule or of bacteria identification (see	n Illumina instruments for a gi	round-breaking new level
15:50- 16:15	Clinical Microbiomics Symposium: Nothing in biology makes sense except in the light of evolution (see p. 33) <i>ROOM II, Second floo</i>		
16.15	Pasteur travel grant ceremony ROOM III, Second floor		
16.30	[O21] Keynote by Kevin Foster <i>ROOM III, Second floor</i> Cooperation and competition in bacteria: from model systems to the microbiome		
	Reception with fermented beverage SALON C, ground floor		

Flash poster presentations

	PARA	ALLEL SESSIONS, MORNING	
	ROOM II Second floor	ROOM III Second floor	ROOM IV Second floor
	Biodiversity & biogeography	Vaccines	Microbial food web in soil
12.00	[P021] Metagenomics profiling uncovers diversity, ecological success and habitat preference of comammox nitrospira Barth Smets, Technical University of Denmark	[P077] Campylobacter phages mimic the host defense strategy by using phase variation to create new phenotypes with modified receptor binding proteins Martine Sørensen, University of Copenhagen	[P049] Two novel bacteriophage genera discovered in a groundwate reservoir indicate large predator-prey diversity in subsurface environments Ole Hylling, Aarhus University
12.05	[P013] Smoke on the water: Drafting the genome of the pigmented algea mesotaenium berggrenii that darkens the greenland ice sheet Athanasios Zervas, Aarhus University	[P101] One size does not fit all; the gap between standardized in vitro biofilm-infected wound models and in vivo clinical settings Ida Clement Thaarup, University of Copenhagen	[P050] Biological drivers of bacterial communities in the arctic water inflow region revealed through manipulations of microbial food web interactions Oliver Müller, University of Bergen
12.10	[P075] MIDAS 4: A comprehensive reference database of microbes in wastewater treatment systems across the globe Morten Simonsen Dueholm, Aalborg University	[P097] Effect of A-hemolysin producing e. coli in two different mice strains/ breads in a dss model to study ibd Hengameh Chloe Mirsepasi-Lauridsen, Statens Serum Institut	[P071] Multi-kingdom microbial communities in earthworms Rumakanta Sapkota, Aarhus University

PARALLEL SESSIONS, AFTERNOON

	Big data and deep learning meets microbiology	Novel antimicrobial therapies	The challenge of slow growing bacteria
14.45	[P036] Increasing the phylogenetic resolution of pseudomonas in soil microbiomes by rpod- specific primers Jonas Greve Lauritsen, DTU Bioengineering	[P004] Antibacterial cue from ecological neighbor increases holomycin production in photobacterium galatheae Yannick Buijs, Technical University of Denmark	[P089] Domain analysis of the cell wall proteinase, lactocepin, of lactococcus lactis Ida Nynne Laforce, National Food Institute
14.50	[P037] Big production without the use of antibiotics - impact on the pig resistome and microbiome Katrine Wegener Tams, DTU Bioengenerring	[P008] Combination of cannabidiol and bacitracin against resistant bacteria Claes S. Wassmann, University of Southern Denmark	[P084] Deep purple: The biological darkening of the greenland ice sheet Laura Halbach, Aarhus University
14.55	[P043] Uncovering the hidden diversity of asgard archaea Jakob Brandt, Aalborg University	[P002] Potential of a bacteriophage cocktail to treat rainbow trout fry syndrome (RTFS): Comparison of delivery methods Valentina Laura Donati, Technical University of Denmark	[P083] The oxygen consumption rate of cable bacteria Stefano Scilipoti, Aarhus University

Novozymes is the world leader in biological solutions

Together with customers, partners and the global community, we improve industrial performance while preserving the planet's resources and helping to build better lives. As the world's largest provider of enzyme and microbial technologies, our bioinnovation enables higher agricultural yields, low-temperature washing, energy-efficient production, renewable fuel and many other benefits that we rely on today and in the future. We call it Rethink Tomorrow

BIOCHEMICAL JOURNAL

Molecular mechanisms in biology

THE NEXT HOME FOR YOUR PAPER

SUBMIT YOUR BEST RESEARCH AT biochemj.msubmit.net

PORTLAND

About DMS

The Danish Microbiological Society (DMS) is a professional association in the fields of human and veterinary medical microbiology, general microbiology, food microbiology, environmental microbiology and biotechnology. DMS has existed since 1958, and is dedicated to the advancement of microbiology, both applied and basic, and promotes microbiological information to the public. These aims are achieved by organizing annual congresses, workshops and symposia - and by taking part in the current microbiological debate.

Furthermore, DMS collaborates with the Danish Pasteur Society on the award of travel grants to students and researchers in microbiology, immunology and related science.

Being a member of DMS, you are part of the advancement of microbiology in Denmark. Additionally, as a member of DMS, you are entitled to discounts at FEMS meetings (Federation of European Microbiological Societies) and for FEMS journals.

Contact

The Danish Microbiological Society Secretariat c/o CAP Partner Nordre Fasanvej 113 DK 2000 Frederiksberg info@dmselskab.dk

Scientific Committee

Thomas Bjarnsholt

(Congress Chairman and Treasurer), Department of Immunology and Microbiology, University of Copenhagen

Carsten Suhr Jacobsen

(President of Danish Microbiological Society), Department of Environmental Sciences, Aarhus University

Trine Rolighed Thomsen

(Vice-President of the Danish Microbiological Society), Danish Technological Institute and Aalborg University

Mette Burmølle (Secretary), Department of Biology, University of Copenhagen

Marie Allesen-Holm Novo Nordisk

Lars Bogø Jensen National Food Institute, Technical University of Denmark

Kasper Nørskov Kragh Department of Immunology and Microbiology, University of Copenhagen

Rikke Louise Meyer Interdisciplinary Nanoscience Center (iNANO) and Department of Bioscience, Aarhus University

Michael Thomas-Poulsen Department of Biology, University of Copenhagen

Katrine Uhrbrand FORCE Technology

Ole Højberg Aarhus University Department of Animal Science

The DMS 2019 Congress is supported by the American Society for Microbiology (ASM). Read more about ASM at www.asm.org

9 @PPPublishing f PortlandPressPublishing

Biology for anyone, anywhere

Nanopore sequencing, the only technology that offers:

- Direct DNA/RNA sequencing
- REAL real time
- Ultra-long reads up to 2 Mb
- Scalable to portable or desktop
- No capital cost required

For a range of biological research applications including large-scale human genomics, cancer research, microbiology, plant science, and environmental research.

Find out more at nanoporetech.com

Oxford Nanopore Technologies, the Wheel icon, Flongle, GridlON, MinION, and PromethION are registered trademarks of Oxford Nanopore Technologies in various countries. © 2019 Oxford Nanopore Technologies. All rights reserved. All products are currently for research use only. AD_1037_(EN)_V1_25Jul2019

Flongle™

MinION™

Speakers' abstracts

[O01] CITIZEN SCIENCE IN SYSTE-MATIC AND APPLIED MICROBIOLOGY

Preben Nielsen¹

<u>Kåre Mølbak¹</u>

¹Novozymes, Microbe Technology, Lyngby, Denmark

"Masseeksperimentet 2018" was an extensive Citizen science project conducted by school children from all over Denmark. We wanted to nurse the interest in biology and biotechnology, show that "good" microbes are surrounding us, and that by relatively simple tools we can show the presence of Lactic Acid Bacteria.

In 3 weeks, 25,000 pupils collected samples and tested for presence of lactic acid bacteria by a simple fermentation experiment. More than 11,000 positive samples were found and submitted to the project. From a subset of 5,000 samples, 12,000 bacterial strains were identified to species level, of which 4000 unique isolates were cultivated, preserved in a strain collection and characterized by shut gun WGS. Based on comparative WGS a subset of the strains could be affiliated to at least 10 novel species. The data were presented to the pupils in a FAST-ANI tree linking up to a map of Denmark showing sample locations and metadata (see bacteriadanica.dk). ¹Statens Serum Institute, Department of Infectious Disease Epidemiology, Department of Infectious Disease Epidemiology, Copenhagen, Denmark

[O02] VACCINE HESITANCY - A MAJOR

THREAT FOR GLOBAL HEALTH

In 2019, WHO identified vaccine hesitancy as one of the ten threats to global health. Thus, vaccine hesitancy ranks among major health threats including ebola and other high-threat pathogens, pandemic influenza, dengue and antimicrobial drug resistance.

Vaccine hesitancy is the reluctance or refusal to vaccinate despite the availability of vaccines, and threatens to reverse progress made in tackling vaccine-preventable diseases. Vaccination is one of the most cost-effective ways of avoiding disease – it currently prevents 2-3 million deaths a year, and a further 1.5 million could be avoided if global coverage of vaccinations improved.

Measles, for example, has seen a 30% increase in cases globally. The reasons for this rise are complex, and not all of these cases are due to vaccine hesitancy. However, some countries that were close to eliminating the disease have seen a resurgence. Weak health care and consequences of conflicts may play an important role - but in many settings, vaccine hesitancy is part of the challenge.

The reasons why people choose not to vaccinate are complex. Lack of awareness of vaccine-preventable diseases, inconvenience in accessing vaccines, belief in advantages of natural infections, and lack of confidence to experts and authorities are key reasons underlying hesitancy. In spite of research that confirm the safety of the MMR vaccine, myths about association between MMR vaccine and autism continues to play a role in the public discourse. In Denmark, concerns about the safety of HPV vaccines caused a temporary set-back for the HPV vaccination programme. This concern was based on case stories that were disseminated by sensationalist media coverage and social media platforms.

Research has not been able to confirm the association between HPV vaccine and adverse events including autonomic dysfunctions. Nonetheless, the concerns seems to linger on as vaccination uptake is not yet back to the level we saw before the crisis.

Suboptimal vaccine coverage should not automatically be framed as vaccine hesitancy. Research shows that vaccine hesitancy is not the major cause for being non-vaccinated in Denmark. While nearly all infants receive the first vaccine at 3 months of age, some parents (in the busy every-day life) simply forget about vaccines when children grow older. We envisage that a new national and "smart" reminder service will serve as a tool to further increase vaccination coverage in Denmark.

[O03] MICROFLORA DANICA MEETS EARTH MICROBIOME PROJECT

<u>Per Halkjær Nielsen</u>¹, Mads Albertsen², Daniel A. McDonald³

¹Aalborg University, Aalborg University, Dep. of Chemistry and Bioscience, Aalborg, Denmark ²Aalborg University, Center for Microbial Communities, Dept. Chemistry and Bioscience, Aalborg, Denmark ³University of California, San Diego, United States

How many microbial species exist on the planet, and how do environments shape their communities? How are they distributed across natural and cultivated habitats on a local and global scale? These are some of the guestions the two projects. "Microflora Danica" and "Earth Microbiome Project" are trying to answer. Novel DNA-based sequencing technologies now allow a robust and high-throughput identification of microorganisms in any habitat. Here, we present the plans and first results for Microflora Danica, or "the Microbiome of Denmark", where over the next 3 years we will establish a reference database over "all" microbes in Denmark cross various habitats. In conjunction with the Earth Microbiome Project and The Microsetta Initiative, we applied the same DNA-based sequencing technique to a collection of over 500 samples from a diverse set of geographically distributed environments. These samples include host and non-host associated collections, including multiple distinct human populations, and provide a glimpse of deep bacterial RNA operon diversity at a global scale. We show a recapitulation short read based observations of the 16S gene for the same samples, provide substantial increase in taxon specificity, and describe the distribution operon elements with respect to environmental variables. These data provide a critical expansion to these open-access resources pairing with other rich data generation presently underway for the same Earth Microbiome Project sample set.

Speakers' abstracts

[O04] PROJECT SOILTRACKER -SOLVING CRIMES WITH SOIL MICRO-BIODIVERSITY

Tobias Guldberg Frøslev¹

¹Terrestrial Ecology, University of Copenhagen, Denmark

DNA extracted from environmental samples (eDNA) – especially soil – is beginning to find use in forensic case work. It has been established that using eDNA metabarcoding to derive "biologigal fingerprints" of soils can be used for matching of soil samples. the same kind of data is beginning to be used in provenance prediction of unknown samples. As part of the SoilTracker project we evaluated the performance of different molecular marker for provenancing soil traces of unknown origin. We tested the performance of eDNA metabarcoding of different genetic markers to predict the origin of unknown soil samples, and also to predict habitat characteristics (forest, meadow, agriculture, etc..) of the sample origin. Overall, we achieved good predictions of environmental gradients and habitat classes to derive a relatively accurate description of the "crime scene". Thus, we conclude, that there is a large potential for the use of metabarcoding provenancing of soil trace samples.

[O05] ATMOSPHERIC MICROORGAN-ISMS IN THE ARCTIC

<u>Tina Šantl-Temkiv</u>¹, IPG Marshall², C Mignani³, M Alsved⁴, D Beddows⁵, M Lever², P Starnawski², J Löndahl⁴, U Gosewinkel⁶, R Lange⁶, A Massling⁶, H Wex⁷, K Finster⁸

¹Aarhus University, Stellar Astrophysics Centre, Department of Physics and Astronomy, Dept. of Bioscience, Aarhus, Denmark ²Aarhus University, Centre for Geomicrobiology, Aarhus, Denmark ³University of Basel. Department of Environmen-

tal Sciences, Basel, Switzerland

⁴Lund University, Faculty of Engineering, Lund, Sweden

⁵School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

⁶Aarhus University, Department of Environmental Science, Roskilde, Denmark

⁷Leibniz Institute for Tropospheric Research, Leipzig, Germany

⁸Aarhus University, Department of Bioscience, Microbiology Section, Aarhus University, Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus, Denmark

Arctic is affected by several climatic feedback processes, caused by changes in albedo, seaice extent, ice-sheet melt, and glacial retreats, which have an impact on the Arctic radiation budget. Microorganisms dispersing through the atmosphere can affect some of these processes, either by their role in cloud formation or by changing the albedo, and consequently the melt processes of icy surfaces. In addition, melting of terrestrial ice opens up new environments for microbial colonization and succession. For all these reasons, the Arctic is of special interest for aeromicrobiology¹. We performed several field campaigns at different locations in the Arctic, i.e. Nuuk Basic Research Station, Villum Research Station and during a cruise in Baffin Bay to investigate bacterial diversity, sources and environmental impacts of airborne microbial communities. We collected air samples with high-volume impingers² and on filters, precipitation samples and potential local terrestrial and marine source samples^{3,4}. Samples were investigated for (i) bacterial concentrations using cell counts and qPCR targeting 16S rRNA genes, (ii) concentration of total and proteinaceous ice-nucleation

particles, (iii) community composition of total and active bacterial communities using next generation sequencing of 16S rRNA molecules and genes. Selected results of these studies will be presented that reveal latitudinal and seasonal trends in the concentrations of airborne bacteria, their predominant terrestrial and marine sources and their airborne activity, in particular in relation to their climatic relevance.

Key words: airborne bacteria – atmospheric dispersal – Arctic atmosphere – bacterial activity –biogenic ice nucleating particles

References

1. Šantl-Temkiv, T. *et al.* Bioaerosol Field Measurements: Challenges and Perspectives in Outdoor Studies. *Aerosol Sci. Technol.* (2019). do i:10.1080/02786826.2019.1676395

2. Šantl-Temkiv, T. *et al.* A high volume impinger for the study of concentration, viability, activity, and ice nucleation activity of airborne microorganisms. *Environ. Sci. Technol.* **51**, 11224–11234 (2017).

 Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. *Fems Micriobiology Ecol.* 94, 1–10 (2018).
 Šantl-Temkiv, T. *et al.* Biogenic Sources of Ice Nucleation Particles at the High Arctic Site Villum Research Station. *Environ. Sci. Technol.*

53, 10580-10590 (2019).

[O06] PREVENTING DISEASE AND ANTIMICROBIAL USE IN ANIMALS BY VACCINATION

Anders Miki Bojesen¹

¹University of Copenhagen, Department of Veterinary Disease Biology, Frederiksberg C, Denmark

Bacteria are common causes of disease in animals kept for food production. For more than a 100 years prevention of disease by vaccination has been an option employed to increase animal welfare and production yield. With the advent of antimicrobials prevention of bacterial infections by vaccination was significantly less popular yet with the rise of antimicrobial resistance renewed interest has been placed in research and development of vaccines targeting bacteria.

Two major challenges to veterinary vaccine development include a considerable antigenic variation within individual bacterial species and a requirement of a very low production cost in order to allow an economically viable product. Regarding antigenic variation many animal pathogens contain from a few to several hundred serotypes, each of which in principle would require an individual vaccine to ensure protection against disease. For this reason the practical implementation of vaccination at farm level has been focused on the most prevalent serotypes knowing that other types could represent a risk. Current vaccine research is therefore highly aware of the need for broad scope vaccines that cover broader than just one or a few serotypes. As profit margins in the animal production generally are very small any intervention like vaccination need to be cheap to be justified economically. This not only applies to the cost of the actual vaccines but also the cost of administering the vaccine. Having to inject a vaccine into each and every animal is not an option e.g. in a poultry flock of 50.000 individuals. Technological advances allowing mass administration of vaccines while securing proper stimulation of a protective immune response is thus a very important requirement.

Finally, the trend of moving production animals back to their natural habitat as happens in freerange or organic production systems re-introduce a much broader spectrum of disease causing microorganism including bacteria, demands a considerably more elaborate prevention effort.

Speakers' abstracts

[O07] USING VIRUSES TO FIGHT VIRUSES – PERSPECTIVES FOR FUTURE VACCINES

Allan Randrup Thomsen¹

¹University of Copenhagen, Department of Immunology and Microbiology, Copenhagen, Denmark

Most current vaccines work through the induction of humoral immune responses resulting in the production of protective antibodies. However, protection against a number of important human infections like HIV and hepatitis C also require the generation of cell-mediated immunity: even in the case a viral infection like flu, a cell-mediated immune response is likely to improve protection. We therefore need vaccines, which are capable of inducing potent and long-standing T-cell mediated immunity. While live attenuated vaccines will do that, newer split vaccines are generally not efficient in raising efficient cell-mediated immunity. Returning to our original roots, the next generation of vaccines are therefor likely to involve various vector based, but replication impaired vaccines that mimic the antigen presentation associated with live bacteria or viruses. Examples of this line of thinking will be presented.

[O08] ADJUVANTS: FROM IMMU-NOLOGIST'S DIRTY LITTLE SECRET TO VACCINOLOGIST'S REQUISITE FOR SUCCESS

Dennis Christensen¹

¹Statens Serum Institute, Copenhagen S, Denmark

Novel vaccine strategies include the so-called subunit vaccines, which encompass only the part of the pathogen to which immune recognition results in protection. The high purity of these vaccines make adverse events less likely, but it also makes the vaccines less immunogenic and therefore potentially less effective. Vaccine adjuvants that increase and modulate the immunogenicity of the vaccine are therefore added to solve this problem. Besides aluminum salts, which have been used in vaccines for 90 years, a number of novel vaccine adjuvants include delivery systems like liposomes and emulsions have been included in licensed vaccines over the last 30 years. However trial-and-error has been the explorative approach of choice, for the design of novel vaccine adjuvants due to major gaps in the knowledge about immunological activation processes. Increasing insight into immunological mechanisms and how to manipulate them has replaced empirical with rational design of adjuvants, leading to vaccine adjuvants with increased and customized immunogenicity profiles without compromising vaccine safety. I will present an overview of where vaccine adjuvant research is today.

[009] PREDATORY BACTERIA IN SOIL: KEY-STONE TAXA OF MICROBIAL FOODWEBS?

Tim Urich¹

[O10] SIGNIFICANCE OF MICROPREDATOR DIVERSITY IN THE RHIZOSPHERE

Flemming Ekelund¹

¹University of Copenhagen, Denmark

While food web models of aboveground ecosystems normally operate with well-defined species with well-defined characteristics: and include terms such as generalists and specialists, belowground models assemble organisms in broad trophic groups; e.g. bacteria, protozoa, nematodes. The vast taxon richness belowground is most likely a major reason for this difference. Still, we would probably achieve a much better understanding of the dynamics and functioning of the belowground network if we acknowledged that bacteria, protozoa, nematodes etc. cannot satisfactorily be described in this simplistic way and that, for example, the generalist vs. specialist concept also is relevant when describing underground systems. I will present a few examples that support this point of view and argue that future research that follow this road will be fruitful. In particular, I suggest to search for bacterial specialist and generalist predators from soil, using largely inedible and largely edible bacteria as bait, and to test whether presence of certain specialist predators may provide more diverse and functionally superior bacterial communities.

[O11] PATTERNS OF MICROBIOME PREDATOR COMMUNITIES AT A GLOBAL SCALE

Stefan Geisen¹

¹Netherlands Institute of Ecology (Nioo-Knaw), Wageningen, Netherlands

The microbiome has a key role in host performance and in environmental functioning. We are increasingly understanding the processes that structure microbiomes with profound efforts in the last years being conducted in soils. Most studies focused on bacteria and fungi, the primary drivers of many processes in soils. Yet, we lack an understanding of larger microbiome components, while often ignoring (trophic) interactions that likely contribute in structuring soil microbiomes. Here I will show the recent advances that help in filling these knowledge gaps. I will highlight work on protists and nematodes, both representing the key predators of bacteria and fungi and as such likely are important in structuring the microbiome. After giving an overview on these groups of organisms, I will show their functional importance and global efforts that aim at deciphering their community structures in soils. Together I will show that this work will help in furthering our knowledge on the global distribution and functioning of soil biodiversity.

[O12] MICROBES INSIDE AND OUT

Daniel McDonald¹, Justin Shaffer², Gail Ackermann², Yan He³, Hongwei Zhou³, Junjun Wang⁴, Gabriela Sheets⁵, Jordan Bisanz⁶, Alexandra Obregon-Tito⁷, Gregor Reid⁸, Maria Gloria Dominguez-Bello⁹, Emily Vogtmann¹⁰, Rashmi Sinha¹⁰, Global Microbiome Conservancy consortium¹¹, Mathilde Poyet¹², Mathieu Groussin¹², Eric Alm¹², Edgar Diaz¹³, Rob Knight¹⁴

¹Uc San Diego, San Diego, United States ²Department of Pediatrics, University of California, San Diego, California, United States ³Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China ⁴Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology China

Agricultural University, Beijing, China ⁵Department of Anthropology, Emory College of Arts and Sciences, Atlanta, Georgia, United States ⁶Hooper Foundation, University of California, San Francisco, United States

⁷Department of Anthropology, University of Oklahoma, Oklahoma, United States ⁸Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, Department of Biochemistry and Applied Mathematics, The University of Western Ontario, London, Canada

⁹Department of Anthropology and of Biochemistry and Microbiology, Rutgers University, New Brunswick, Nj, United States ¹⁰Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States

¹¹Center for Microbiome Informatics and Therapeutics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States ¹²Center for Microbiome Informatics and Therapeutics, Department of Biological Engineering, Massachusetts Institute of Technology, The Broad Institute of Mit and Harvard, Cambridge,

Massachusetts, United States ¹³Department of Pediatrics, University of California, San Diego, La Jolla, California, United States ¹⁴Department of Pediatrics, University of California, Department of Computer Science & Engineering, Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States

Populations differ in host genetics, diet, lifestyle and environment. Within that background, unattributed factors drive variation in the gut microbiome. Here, we bring together data from The Microsetta Initiative and the Global Microbiome Conservancy, projects which spans multiple populations, and integrate these data in a meta-analysis with other population datasets that used the Earth Microbiome Project protocols. The combined analysis spans over 30,000 human samples. Specifically, 16S rRNA V4 amplicon data from The Microsetta Initiative and other studies using common molecular protocols were integrated using Qiita. These data recapitulate and extend Yatsunenko et al. (2012, Nature), showing that European, Australian, and North American populations are more similar to one other than each is to South American or sub-Saharan African populations. Unexpectedly, individuals from Bangladesh, the Philippines and Iran exhibit an intermediate relationship between Western and non-Western groupings. These data were then integrated with the Earth Microbiome Project, highlighting the microbial connection between humans and the environment. Defining how populations relate is a critical step in translating microbiome results. This backdrop carries medical implications, as it is presently unknown whether such massive differences in microbial community composition among populations have the potential to modulate microbiome therapies.

[O13] BINNING MICROBIAL GE-NOMES USING DEEP LEARNING

Jakob Nybo Nissen¹, Joachim Johansen², Rosa Lundbye Allesøe², Casper Kaae Sønderby³,

Jose Juan Almagro Armenteros⁴, Christopher Heje Grønbech³, Henrik Bjørn Nielsen⁵, Thomas Nordahl Petersen⁶, Ole Winther⁷, <u>Simon Rasmussen⁸</u>

¹Department of Health Technology, Technical University of Denmark, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

²Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ³Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark ⁴Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark ⁵Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark ⁶National Food Institute. Technical University of Denmark, Kongens Lyngby, Denmark ⁷Bioinformatics Centre, Department of Biology, University of Copenhagen, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Center for Genomic Medicine, Copenhagen University Hospital, Denmark ⁸Nnf Center for Protein Research, University of Copenhagen, København N, Denmark

Despite recent advances in metagenomic binning, reconstruction of microbial species from metagenomics data remains a challenging task. Here we use recent advances in deep learning to develop an algorithm that uses deep variational autoencoders to encode sequence co-abundance and *k*-mer distribution information prior to clustering. We show that our variational autoencoder is able to integrate these two distinct data types without any prior knowledge of the datasets. Our method outperforms existing state-of-the-art binners on contig datasets, reconstructing 127-167% as many precise and complete genomes. Additionally, we developed a multi-sample and splitting strategy, that enables assembly of 23-89% more strains compared to commonly used single binning strategies. Furthermore, our method enables direct high-resolution taxonomic profiling across samples.

Finally, to demonstrate the scalability of our method, we bin a human gut microbiome dataset from 1,000 samples. By employing GPU acceleration for training and clustering we reconstruct 30% more near-complete bins compared to state-of-the-art and even ensemble strategies. Our method Variational Autoencoders for Metagenomic Binning (VAMB) can be run on standard hardware and is freely available at <u>https://github.com/RasmussenLab/</u> vamb.

[014] TRASH TO TREASURE: EXPLOR-ING THE WASTEWATER SYSTEM WITH HIGH QUALITY MAGS FROM LARGE-SCALE NANOPORE DATA

<u>Caitlin Singleton¹</u>, Martin Andersen², Rasmus Kirkegaard², Thomas Michaelsen², Søren Karst², Morten Dueholm², Per Nielsen², Mads Albertsen²

¹Aalborg University, Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark ²Aalborg University

Improvements to wastewater resource recovery and treatment efficiency are essential for fulfilling the UN sustainable development goals for both sustainable cities (goal 11) and responsible production and consumption (goal 12). Microbes are central to the processes underpinning wastewater treatment, however knowledge of this complex community is limited to isolates, marker genes or incomplete genomes. To improve our capacity to characterise this community at the genome level, we conducted large-scale long-read sequencing of 23 Danish full-scale wastewater treatment plant (WWTP) metagenomes using the Nanopore PromethION platform, producing >1 Tbp (or 17 TB raw) of long-read data. These data enabled the recovery of 987 metagenome-assembled genomes (MAGs), including 36 circular genomes, after short-read data polishing (>0.9 Tbp Illumina). The recovered MAGs met stringent high-quality draft requirements of >90% completeness, <5% contamination and full-length rRNA genes. The MAGs included known and uncharacterised, abundant and rare lineages, and accounted for 25% of the populations present in the metagenomes. With these MAGs we present a HQ reference database for WWTP systems that will facilitate the connection of genomic potential to historical and future amplicon studies.

[015] ICARS-THE INTERNATIONAL CENTER FOR ANTIMICROBIAL RESISTANCE SOLUTIONS

Robert Leo Skov¹

¹SSI, Microbiology, Denmark

Despite recent global efforts to mitigate the impact of antimicrobial resistance (AMR), information and evidence on the effects of AMR on health and the economy have so far failed to be translated into actions in many parts of the world, especially in low and middle income countries (LMICs). The International Centre for Antimicrobial Resistance Solutions - ICARS is a new partnership that aims to conduct policy relevant applied research at international, national and local level to identify knowledge and evidence-based solutions in close collaboration with countries and key stakeholders. ICARS will support LMICs to conduct applied research relevant to their local challenges and therefore implementing aspects of their AMR National Action Plans (NAPs). It will aim to bridge the gap between science and policy translating national action plans into evidence based practices on the ground. Projects and activities will aim to build local capacity and capability to sustain and scale up the evidence-based solutions identified. Output will be made accessible and where appropriate in open repositories. ICARS will work internationally as a solution development partnership with projects and activities in various locations around the world. Through its work, ICARS will aim to partner with governmental bodies, policymaker and civil society foundations to support the delivery of the United Nations (UN) General Assembly AMR Resolution agreed in September 2016 and fill some of the gaps in the global response highlighted by the recent recommendations of the UN Inter Agency Co-ordination Group (IACG) on AMR in April 2019. ICARS - will operate as partnership, co-ordinated through, and anchored by, hubs in Denmark, the International Livestock Research Institute (ILRI) based in Kenya, and elsewhere as ICARS expands over time. The partnerships will include research, policy, and technical participation from collaborating countries, academic institutions, and national and international organisations.

[O16] FECAL TRANSPLANTS – THE ULTIMATIVE PROBIOTIC FOR PIGS?

Nuria Canibe¹

¹Aarhus University, Tjele, Denmark

It is becoming increasingly evident that the gastrointestinal microbiota has a significant impact on the overall health and performance of the pig. This has led to intensified studies on the composition of the gastrointestinal microbiota, factors affecting it, and the impact of the microbiota on health, growth performance, and more recently, behavior of the host. Pig production research has been heavily focused on assessing the effects of feed additives and dietary modifications to alter or take advantage of select characteristics of gastrointestinal microbes to improve health and feed conversion efficiency. Research on faecal microbiota transplantation (FMT) as a possible tool to improve outcomes in pigs through manipulation of the gastrointestinal microbiome is verv recent and limited data is available. Results on FMT in humans demonstrating the transfer of phenotypic traits from donors to recipients and the high efficacy of FMT to treat *Clostridium* difficile infections in humans, together with data from pigs relating gut microbiota composition with growth performance has likely played an important role in the interest towards this strategy in pig production.

There are obvious inherent biosecurity and regulatory issues in this strategy, since the donor's microbiome can never be completely screened for all possible non-desirable microorganisms. However, considering the success observed in humans, it seems worth investigating this strategy for certain applications in pig production.

Further, FMT research may lead to the identification of specific bacteria or bacterial group/s providing improved health, i.e., probiotics, rather than the broader approach applied in FMT. This, besides eventually improving and standardizing the output, would also overcome the biosecurity issues.

[O17] LOCAL DRUG DELIVERY TO TARGET BIOFILM INFECTIONS

<u>Rikke Louise Meyer</u>¹, Raoul Walter², Signe Maria Nielsen², Pernille Ommen², Line Hansen²,

Hieu Quang³, Jørgen Kjems², Alexander Zelikin⁴, Rikke Christiansen⁵

 ¹Interdiciplinary Nanoscience Centre (Inano), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
 ²Interdisciplinary Nanoscience Center (Inano), Aarhus University, Aarhus, Denmark
 ³Aarhus University, Denmark
 ⁴Department of Chemistry, Aarhus University, Aarhus C
 ⁵Interdisciplinary Nanoscience Center (Inano), Aarhus University, Denmark

Antibiotic treatment of biofilm infections often fail because the dose that can be administered safely is insufficient to eradicate the biofilm. We hypothesize that treatment will be more effective if drugs are delivered or synthesized at the site of infection, leading to a high local concentration with minimal side effects. We aimed at delivering a high local dose of antibiotics through two different approaches: i) targeted delivery of encapsulated antibiotics, and ii) local drug synthesis through prodrug therapy.

Targeted drug delivery uses drug encapsulation, accumulation in the biofilm, and a triggered burst release. We encapsulated vancomycin and rifampicin in temperature-sensitive liposomes decorated with aptamers that bind *Staphylococ-cus aureus*. Accumulation, drug release, and kill efficiency was quantified on *S. aureus* biofilms.

Prodrug therapy uses immobilized enzymes to convert non-toxic prodrugs to the active drug. We developed a novel method for synthesizing glucuronide prodrugs, opening the door for antimicrobial prodrug therapy. We immobilized the catalyst (β -glucuronidase) in a layer-by-layer coating on titanium implants. Glucuronide prodrugs of moxifloxacin was administered in solution, and the effect on *S. aureus* viability and biofilm formation was quantified.

Aptamer-targeted liposomes accumulated in *S. aureus* biofilms, resulting in eradication of biofilms in vitro, while non-targeted liposomes were less effective. Although this result is promising, the burst release offers little control over dosage and exposure time. We therefore proceeded with prodrug therapy. The embedded enzyme continuously converted the prodrug to moxifloxacin at the implant surface, which prevented biofilm formation, even under flow.

Targeted drug delivery and pro-drug therapy enable local antibiotic therapy. Drug the exposure time and concentration is better controlled in prodrug therapy, and we believe that our encouraging results will pave the way for implementing more potent drugs that target persister cells in treatment of biofilm infections.

[O18] MICROBIOLOGICAL AND PATHOGENESIS FEATURES DISTIN-GUISHING LYME DISEASE AND RELAPSING FEVER SPIROCHETES

Sven Bergstrom¹

¹Molecular Biology, Umeå University, Umeå, Sweden

The recent proposal of splitting the genus Borrelia into two genera in the newly formed family of Borreliaceae, i.e. Borrelia and Borreliella has motivated us to reflect upon how these organisms has been characterized and differentiated. Herein we therefore aim to take a closer look on the biology and virulence attributes of the two suggested genera, i.e. those causing Lyme borreliosis and relapsing fever borreliosis, respectively.

In fact, both these genera has a lot in common with similar infection biology features . They are both characterised as bacterial zoonoses, transmitted by hematophagous arthropods with almost identical microbiological appearance. Nevertheless, a closer look at their genotypic and phenotypic characteristics clearly reveals several differences that might motivate the suggested split. On the other hand, a change of this well-established classification within the genus *Borrelia* might impose an economical burden as well as a great confusion in the society, including medical and scientific societies as well as the general population.

[019] TUBERCULOSIS–DIAGNOSIS FROM A LABORATORY POINT OF VIEW

Dorte B. Folkvardsen¹

¹Statens Serum Institut, International Reference Laboratory of Mycobacteriology, Copenhagen S, Denmark

Mycobacteria are a diverse group of actinobacteria, comprising more than 100 species. The most well-known and well characterized, *Mycobacterium tuberculosis* (Mtb), is the causative agent of tuberculosis (TB). Other species are *Mycobacterium leprae*, causing leprosy and non-tuberculous mycobacteria (NTM) that are common in the environment and some of them are opportunistic pathogens.

It is not an easy group of bacteria to culture, ranging from a few days to positive culture for the NTM fast growers, to 56 days until a negative culture for the majority, to the almost-impossible-to-grow *Mycobacterium leprea*. Tuberculosis is the number one cause of death related to an infectious disease, recently it has surpassed HIV/AIDS.

The quest for the fastest way to diagnose TB in the lab is still ongoing, and a number of molecular tests to rapid detection in primary specimens have been developed. However, the sensitivity is still lower than for culture, which besides taking several weeks, requires expensive equipment, specialized media, and skilled personnel. A big portion of the analyzes applied to TB specimens, are still delayed until sufficient growth of an isolated culture is obtained.

Mtb is an enigma -a slow growing, not very contagious, hard to culture bug, with huge success worldwide.

Speakers' abstracts

[O20] SLOW-GROWTH AND NO-GROWTH IN NATURAL ENVIRONMENT

<u>Hans Røy</u>1

¹Institute for Bioscience, Aarhus University, Aarhus C, Denmark

Research within the ocean drilling projects have demonstrated large populations of prokaryotes that live deep below the seafloor under extreme energy limitation. These organisms are not merely the dying remains of the once thriving surface community, but cells that live in a delicate balance with the flux of energy that can be harvested from slow degradation of ancient organic material. The community composition is distinctively different from that of the energy rich and dynamic sediment surface, but the transition between the two occur only 10 cm below the seafloor. Close examination of the ratio between community size and community respiration confirms that the energy available for the individual organisms this close to the seafloor is just as meager as for those that have been buried for millions of years without resupply of organic substrates. This demonstrate a life strategy linked to cellular metabolism far below what we know from laboratory cultures, which is still distinct from dormancy. This this type of organisms are not restricted to exotic niches buried deeply below the seafloor. They can be studied with relative ease in sedimentary environments where they constitute a dominating fraction of the community. In environments where they co-exist with fast growing types, however, their activity may easily escape detection.

Keynote abstract

[O21] COOPERATION AND COMPE-TITION IN BACTERIA: FROM MODEL SYSTEMS TO THE MICROBIOME

Kevin Foster¹

¹University of Oxford, Oxford, United Kingdom

Microbes display a dizzying array of social traits, from enzymes released to break down nutrients and antibiotics, through slimey secretions that protect and disperse, to draconian molecular machines that stab, rupture and poison their competitors. But what determines whether microbes cooperate or compete with each other, and how does this affect their hosts? To answer these questions, we combine theory and experiments with pathogenic bacteria and the mammalian microbiome. This has revealed that clonemate patches naturally emerge in microbial communities, which favours strong cooperation by kin selection. But interactions between strains and species are often competitive. We find that bacteria are often at war and are even capable of reciprocation, detecting incoming attacks and responding collectively in devastating counterattacks. Microbial interactions follow the same evolutionary principles that were first understood through the study of animal behavior. However, one fascinating property of microbes is that their entire ecosystem can lie within another evolving organism – a host - that is trying to control them and their interactions. The result appears to be a complex coevolutionary dance with the host and its immune system on one side, and the whole microbiota on the other.

Submit your next paper at

www.manuscriptmanager.com/apmis

APMIS

publishes original research in the fields of pathology, microbiology and immunology, and from related developing areas of modern biomedicine.

Formerly Acta Pathologica, Microbiologica et Immunologica Scandinavica, APMIS has been published since 1924 by the Scandinavian Societies for Medical Microbiology and Pathology as a non-profit-making journal.

www.apmis.org

Follow APMIS on Twitter @APMISIournal

Editors-in-Chief:

T. Bjarnsholt

P. Ø. Jensen L. Kruse Jensen E. Ralfkiær

apmis@apmis.dk

Editorial Office:

Rigorous peer review

Fast publication

Established

in 1924

Global readership

WILEY

Your expert partner for microbiome analysis

At Clinical Microbiomics we offer full-service microbiome analyses for both clinical, pre-clinical and animal health studies.

We can assist in the entire workflow from extracting DNA from your study samples, over sequencing to profiling and biostatistics linking the microbiome to clinical outcomes. Thanks to our proprietary pipeline for 16S rDNA amplicon sequencing and

metagenomic shotgun sequencing, we can accurately analyze how the microbiome varies between samples – from different treatment groups in your study or for comparing the microbiome in diseases to that of healthy subjects.

For us, full-service means supporting you through your study from planning to the final report.

Clinical Microbiomics A/S

+45 93 51 12 53

www.clinical-microbiomics.com

clinical microbiomics

Automate your pipetting in minutes with flowbot ONE

Changing Food Microbiology

AOAC-OMA & ISO 16140-part 6 validated

A user friendly pipetting cobot that provides you with a high degree of flexibility

Everyone working with pipetting in the lab can use flowbot ONE

Learn to use flowbot ONE in 1 hour

flowbot ONE

MALDI Biotyper® - One System - One Workflow

Confirmation of selected pathogens

- Salmonella spp.
- Cronobacter spp.
- Listeria spp. and L. monocytogenes
- Campylobacter spp.

Not for use in clinical diagnostic procedures.

Contact us for further details:

ms.sales.bdal@bruker.com | www.bruker.com/microbiology

www.flow-robotics.com

Innovation with Integrity

Your distributor in Scandinavia

In business for more than 20 years, Nordic BioSite is recognized as a leader in supply of products for research and diagnostic, Immunology and Molecular Biology, to Pharmaceutical, Biotech, Diagnostic and to academic researchers.

Welcome to Nordic BioSite's Life Science Blog. Here, we will provide commentary on current events and trends in biological sciences, interesting stories about important scientists, technical tips and suggestions, and much more. Read on and learn something new.

+46 8 5444 3340 info@nordicbiosite.com www.nordicbiosite.com

Industry symposia

Bruker symposium

ISO 16140-6 validation of MALDI Biotyper

Time:12.35-13.00Room:Room II, second floorSpeaker:Erik Dahm, Fødevarestyrelsen

ISO 16140-6 validation of MALDI Biotyper

- Microbiology of the food chain Method validation Part 6: Protocol for the validation of alternative (proprietary) methods for microbiological confirmation and typing procedures
- > Microval An international certification organisation
- > The validation protocol
- > The validation of MALDI Biotyper

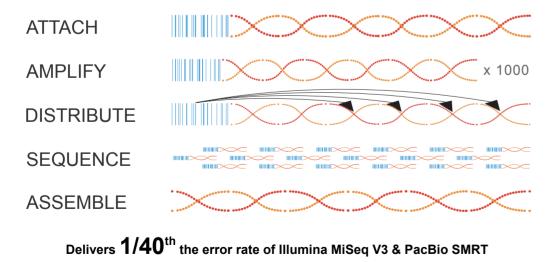
Nordic Biosite Symposium

Standardizing Microbiomics – Removing Bias in Collection, Purification and Analyses

Time:13.10-13.35Room:Room II, second floorSpeaker:Julia Kappel, Zymo Research

- > Zymo Research has the goal to provide researchers the best tools for microbiome measurement to ensure standardized microbiomic workflows.
- > The ZymoBIOMICS™ portfolio has been developed to eliminate bias across microbiomics workflows and offers a complete pipeline from start-to-finish for all your microbiome related needs.
- > ZymoBIOMICS[™] offers a complete workflow, from sample collection to analysis, which offers streamlined collection, purification, and the first microbial community standards.

LoopSeq™


New groundbreaking NGS sample prep kit for long read sequencing for Illumina sequencer - no extra hardware

LoopSeaTM 16S Microbiome kit : full 16S V1-V9 long read sequencing, specialised for prokaryotic microbiome research. Includes low biomass (2-200 picogram input) and read cloud (affordable alternative for quantification) variants.

LoopSeg™ Mycobiome kit : full 18S-ITS1-ITS2 long read sequencing, specialised for complex fungal communities.

LoopSegTM Genome 3x8 kit : long read sequencing of bacterial genomes, without using reference genomes or scaffolding sequences

Leumus Genomics

Products and Services for Genomic Analysis

Leymus Genomics Symposium

Industry symposia

Long-read single molecule sequencing on Illumina instruments for a ground-breaking new level of bacterial identification.

Time: 15 15-15 40 Room II. second floor Room: Speaker: Rasmus Brøndum, Founding CEO of Levmus Genomics

Leumus Genomics Products and Services for Genomic Analysis

Short overview of presentation: LoopSeq® kits are a new type of library preparation kits from Loop Genomics that lets you do synthetic long-read single molecule sequencing on your existing Illumina short-read sequencers.

- > By attaching unique molecular identifiers as 'barcodes', this technology means you get true quantitative results that are free from PCR bias.
- > The de novo assembly algorithm gives you consensus error correction that results in error rates 40x lower than Illumina MySeq V3 and PacBio SMRT, and 7,500x lower than Oxford Nanopore.
- > These high-guality long-read sequences provides you with a very high resolution down to species and even strain level for microbiome research, and effectively removes false positive species identification.
- > Multiplexed single-tube workflow means only 2-3 hours of hands-on time in the lab and is easy to integrate and automate with your existing pipeline.
- > The technology is available both as kits and as a service.

Clinical Microbiomics Symposium

Nothing in Biology Makes Sense Except in the Light of Evolution

15.50-16.15 Time: Room II, second floor Room: Speaker: Henrik Bjørn Nielsen, PhD, Chief Scientific Officer at Clinical Microbiomics

Clinical-Microbiomics offers custom-tailored microbiome research as a service, including data-generation and bioinformatics analysis. Here we present our framework for ultra-high resolution (UHR) microbiomics. UHR microbiomics allows us to accurately profile the microbial composition of samples and to build phylogenetic trees that relate sub-species populations across samples and subjects. Phylogenetic trees elegantly condense vast amounts of details into simple data-structures that can be used for statistical analysis and for deriving functional insights. Moreover, it allows us to track therapeutic strains, to monitor microbial population dynamics, and even to gain insight to microbial inherence of accessory genes.

calScreener™ Metabolic Assay

Real-Time. Label-Free. Morphology-Independent.

SYMCEL o

Poster sessions and Poster Index

The posters will be presented at two different breaks – please see the schedule. If you have a poster at DMS 2019, please be present during the assigned time according to your poster number.

Time	Numbers
12:45 - 13:45	Even numbers
15:15 - 16:15	Uneven numbers

Poster no.	Title	Presenter
Antimicro	bial compounds and therapies	
P001	ISOLATION AND CHARACTERIZATION OF NOVEL CLOSTRIDIUM PERFRINGENS BACTERIOPHAGE SUSFORTUNA	Julie Stenberg Pedersen
P002	POTENTIAL OF A BACTERIOPHAGE COCKTAIL TO TREAT RAINBOW TROUT FRY SYNDROME (RTFS): COMPARISON OF DELIVERY METHODS	Valentina Laura Donati
P003	ANTIMICROBIAL ACTIVITY ANALYSIS OF SILVER NANOPARTICLES FROM GINKO BILOBA	Arvind Kumar Yada
P004	ANTIBACTERIAL CUE FROM ECOLOGICAL NEIGHBOR INCREASES HOLOMYCIN PRODUCTION IN PHOTOBACTERIUM GALATHEAE	Yannick Buijs
P005	THE ROLE OF ELLAGIC TANNINS TO REDUCE ANTIBIOTICS TREATMENTS IN PIG HERDS FROM 300% TO 10%	Klaus Sall
P006	A MODIFIED ISOLATION CHIP FOR IN SITU CULTIVATION AND ISOLATION OF ANTIMICROBIAL DRUG-PRODUCING BACTERIA FROM SOCIAL SPIDER NESTS	Seven Nazipi
P007	ISOLATION AND CHARACTERIZATION OF BACTERIOPHAGES TARGETING ESBL-PRODUCING E. COLI IN DANISH PRIMARY PRODUCTION	Amira Vitt
P008	COMBINATION OF CANNABIDIOL AND BACITRACIN AGAINST RESISTANT BACTERIA	Claes S. Wassmann
P009	GENETIC POTENTIAL FOR SECONDARY METABOLITE BIOSYNTHESIS IN THE NEST MICROBIOME OF SOCIAL SPIDERS	Lasse Jensen
P010	REMOVAL OF ANTIBIOTICS AND ANTIBIOTIC RESISTANCE- PROMOTING PHARMACEUTICALS IN A COLUMN STUDY SIMULATING MANAGED AQUIFER RECHARGE (MAR)	Jakub Modrzynski
P011	ISOLATION OF NOVEL PHAGES TARGETING PSEUDOMONAS SYRINGAE	Jacob Bruun Jørgensen
P012	EXTENDED MIC VALUES: DETERMINING TENTATIVE EPIDEMIOLOGICAL CUT-OFF VALUES FOR ANTIBIOTICS IN BACTERIAL MINK PATHOGENS	Nanett Kvist Nikolaisen
Microbial ·	- omics	
P013	SMOKE ON THE WATER: DRAFTING THE GENOME OF THE PIGMENTED ALGEA MESOTAENIUM BERGGRENII THAT DARKENS THE GREENLAND ICE SHEET	Athanasios Zervas
P014	UNIVERSAL DERMAL MICROBIOME IN HUMAN SKIN	Lene Bay
P015	POST TRANSCRIPTONAL CLEAVAGE OF CELL-CYCLE RGEGULATOR CTRA BY TOXIN-ANTITOXIN SYSTEM HIGBA IN CAULOBACTER CRECENTUS	Koyel Ghosh
P016	INVESTIGATING FUNGAL ADAPTATIONS TO EXTREME ENVIRONMENTS USING HERBARIUM SPECIMENS	Benjamin Conlon
P017	PRENATAL DIETARY SUPPLEMENTS INFLUENCE THE INFANT AIRWAY MICROBIOTA IN A RANDOMIZED FACTORIAL CLINICAL TRIAL	Mathis Hjelmsø
P018	ASSESSING VERTICAL TRANSMISSION AND CONFLICT AMONGST GUT BACTERIAL SYMBIONTS IN TERMITES	Justinn Hamilton Renalias
P019	FACETS OF DIAZOTROPHY IN THE OMZ OFF PERU REVISITED: WHAT WE COULD NOT SEE FROM A SINGLE MARKER GENE APPROACH	Christian Christiansen

Poster index

Poster no.	Title	Presenter
P020	PARALLEL EVOLUTIONARY PATHS TO PRODUCE MORE THAN ONE PSEUDOMONAS AERUGINOSA BIOFILM PHENOTYPE	Janne Gesine Thöming
P021	METAGENOMICS PROFILING UNCOVERS DIVERSITY, ECOLOGICAL SUCCESS AND HABITAT PREFERENCE OF COMAMMOX NITROSPIRA	Barth Smets
P022	THE INFLUENCE OF THE ENVIRONMENT ON THE POTENTIAL FOR NATURAL PRODUCT BIOSYNTHESIS	Aileen Geers
P023	A NOVEL AND DIRECT MOBILOME APPROACH IMPROVES THE DETECTION OF LARGER-SIZED CIRCULAR ELEMENTS ACROSS KINGDOMS	Katrine Skov Alanin
P024	SPECIES DETERMINATION OF NONTUBERCULOUS MYCOBACTERIA (NTM) BASED ON CORE SEQUENCES OF THREE GENES IN A MULTIPLEX PCR	Erik Michael Rasmussen
P025	THE GUT, ORAL, AND NASAL MICROBIOTA IN PEDIATRIC ALLOGENEIC HSCT AND PREDICTION OF ACUTE GVHD	Anna Ingham
P026	PHYLOGENY AND SECONDARY METABOLITE GENE CLUSTERS FROM THE TERMITE FUNGAL CROP TERMITOMYCES.	Suzanne Schmidt
P027	ACTINOBACTERIA: GENOME SEQUENCING AND ASSEMBLY	Tue Jørgensen
P028	INVESTIGATION OF SMALL, CIRCULAR DNA ELEMENTS REVEAL TRANSPOSITION FREQUENCY AND MECHANISMS OF MOBILE GENETIC ELEMENTS AND THEIR POTENTIAL INVOLVEMENT IN RESISTANCE DEVELOPMENT	Tue Nielsen
P029	GLOBAL GENOME-CENTRIC METATRANSCRIPTOMICS UNRAVELS FOOD WEBS IN COMPLEX MICROBIAL COMMUNITIES	Thomas Yssing Michaelsen
Microbial	ecology	
P030	MICROBIAL DIVERSITY IN SUBTROPICAL BEACHROCK	Aidas Marijus Vysniauskas
P031	WHAT MAKES A "CULT-WINE"? PRODUCTION-CHAIN MICROBIAL DIVERGENCES IN VINEYARDS AND WINES FROM RIBERA DEL DUERO	Alex Gobbi
P032	RESCUING ROLE OF STAPHYLOXANTHIN IN MIXED MICROBIAL COMMUNITIES	Rune Overlund Stannius
P033	THE POTENTIAL OF SOIL-BORNE BIOCONTROL AGENTS: ELUCIDATING THE FUNCTION, VARIATION AND BIOCONTROL POTENTIAL OF SECONDARY METABOLITES BY BACILLUS SUBTILIS ISOLATES	Heiko Thomas Kiesewalter
P034	BACILLUS SUBTILIS BIOFILM FORMATION AND EVOLUTION ON PLANT ROOTS	Mathilde Nordgaard
P035	STUDYING B. SUBTILIS IN ROOT COLONIZATION OF DIFFERENT PLANT SPECIES	Christopher Blake
P036	INCREASING THE PHYLOGENETIC RESOLUTION OF PSEUDOMONAS IN SOIL MICROBIOMES BY RPOD-SPECIFIC PRIMERS.	Jonas Greve Lauritsen
P037	PIG PRODUCTION WITHOUT THE USE OF ANTIBIOTICS - IMPACT ON THE PIG RESISTOME AND MICROBIOME	Katrine Wegener Tams
P038	A BROAD-HOST RANGE, READILY PROGRAMMABLE CAS9 NUCLEASE DELIVERY VECTOR FOR RAPID AND PREDICTABLE PLASMID-CURING OF NATURAL ISOLATES	Sarah Camara Wilpert
	THE ROLE OF MOBILE GENETIC ELEMENTS AND	Michela Gambino

Poster no.	Title	Presenter
P040	WASTEWATER BIOFILMS: HOW SOCIAL INTERACTIONS INFLUENCE BIOFILM FORMATION BY WASTEWATER BACTERIA	Ana Silva
P041	OPTIMIZING HOST SURVIVAL STRATEGY THROUGH RAPID PROPHAGE EVOLUTION	Anna Dragos
P042	DIVERSITY, LOCALIZATION, AND MICROENVIRONMENTS OF THE SPECIFIC BACTERIAL SYMBIONTS OF SOCIAL SPIDERS (STEGODYPHUS DUMICOLA) DIVERSITY, LOCALIZATION, AND MICROENVIRONMENTS OF THE SPECIFIC BACTERIAL SYMBIONTS OF SOCIAL SPIDERS (STEGODYPHUS DUMICOLA)	Tobias Sandfeld
P043	UNCOVERING THE HIDDEN DIVERSITY OF ASGARD ARCHAEA	Jakob Brandt
P044	CLOACAL SWABS AND ALCOHOL BIRD SPECIMEN ARE GOOD PROXIES FOR COMPOSITIONAL ANALYSES OF GUT MICROBIAL COMMUNITIES OF WILD BIRDS	Kasun Bodawatta
P045	EXPERIMENTAL EVOLUTION ON PLANT ROOT SHAPES GENO- AND PHENOTYPIC ADAPTION OF BACILLUS THURINGIENSIS	Yicen Lin
P046	IMAGING NEAR-INFRARED RADIATION DRIVEN PHOTOSYNTHESIS OF CHLOROPHYLL F-CONTAINING CYANOBACTERIA IN BEACHROCK BIOFILMS	Maria Mosshammer
P047	ROLE OF THE SOLONAMIDES IN PHOTOBACTERIUM GALATHEAE S2753	Laura Louise Lindqvist
P048	MUTATION ACCUMULATION EXPERIMENT SHOWS HIGH EVOLVABILITY IN P. AERUGINOSA.	Igor Grekov
P049	TWO NOVEL BACTERIOPHAGE GENERA DISCOVERED IN A GROUNDWATER RESERVOIR INDICATE LARGE PREDATOR-PREY DIVERSITY IN SUBSURFACE ENVIRONMENTS	Ole Hylling
P050	BIOLOGICAL DRIVERS OF BACTERIAL COMMUNITIES IN THE ARCTIC WATER INFLOW REGION REVEALED THROUGH MANIPULATIONS OF MICROBIAL FOOD WEB INTERACTIONS	Oliver Müller
P051	DICKEYA DADANTII PHAGE AMAETHON DEMONSTRATES A WIDESPREAD OCCURRENCE OF 5-METHYLCYTOSINE MODIFICATIONS IN PHAGE GENOMES	Amaru Djurhuus
P052	DISCOVERY OF NOVEL CLASS 1 AND CLASS 2 CRISPR-CAS INHIBITORS THAT CROSS SUB-TYPE BARRIERS	Rafael Pinilla
P053	PLASMIDS PERSIST IN A MICROBIAL COMMUNITY BY PROVIDING FITNESS BENEFIT TO MULTIPLE PHYLOTYPES	Liguan Li
P054	THE IMPACT OF PLASMID HOST RANGE ON THE DISSEMINATION OF ANTIBIOTIC RESISTANCE GENES TO THE URBAN WASTEWATER MICROBIOME	Asmus Olesen
P055	GASTRIC CORE MICROBIOME OF THE CORAL GALAXEA FASCICULARIS	Cecilie Ravn Gøtze
P056	AN EASILY MODIFIABLE CONJUGATIVE PLASMID FOR STUDYING HORIZONTAL GENE TRANSFER	Qinqin Wang
P057	PREVALENCE OF HAEMOSPORIDIAN PARASITES IN BIRDS ALONG ABIOTIC GRADIENTS.	Celia Vinagre-Izquierdo
P058	IDENTIFICATION OF MICROBES INVOLVED IN ANAEROBIC OXIDATION OF METHANE IN FRESHWATER SEDIMENT	Paul Rousteau
P059	INCN PLASMIDS ARE VECTORS DISSEMINATING COLISTIN RESISTANCE IN WASTEWATER MICROBIOTA	Zhuofeng Yu
P060	MECHANISMS OF MERCURY RESISTANCE IN HIGH ARCTIC SNOW AND FRESHWATER BACTERIA.	Lorrie Maccario
P061	PHAGE-MEDIATED MANIPULATION OF A MURINE GUT MICROBIOME DECREASE SYMPTOMS OF TYPE-2-DIABETES AND OBESITY	Torben Sølbeck Rasmussen
P062	CHARACTERIZATION OF THE VAGINAL DNA VIROME IN HEALTH AND DYSBIOSIS: AN OPENING STUDY IN PATIENTS WITH NON-FEMALE FACTOR INFERTILITY	Rasmus Riemer Jakobsen
P063	MICROBIOME CHANGES IN CORALS RESPONDING TO DISTINCT FEEDING REGIMES	Ole Brodnicke

Poster index

Poster no.	Title	Presenter
P064	THE INFLUENCE OF MICROBIAL SECONDARY METABOLITES ON MICROBIAL DIVERSITY AND FUNCTIONALITY IN A MARINE MODEL SYSTEM	Nathalie Nina Suhr Eiris Henriksen
P065	EXPLORING THE POTENTIAL ROLE OF BACILLUS SUBTILIS AS BIOCONTROL AGENT: COLONIZATION OF AGARICUS BISPORUS AND INHIBITION OF TRICHODERMA AGGRESSIVUM	Stevanus Aditya Listian
P066	ENRICHMENT OF FULL LENGTH RRNA OPERONS FROM ENVIRONEMNTAL SAMPLES	Emil Aarre Sørensen
P067	BREAKING THE DEFENSIVE BARRIER: FUNGUS-FARMING TERMITE THREATS FROM FUNGAL DISEASE	Romen Palenzuela Rodríguez
P068	THE UROPYGIAL GLAND BACTERIA AND THEIR POTENTIAL DEFENSIVE ROLES IN GREAT TITS (PARUS MAJOR)	Signe Schierbech
P069	PODAXIS' PRESENCE IN HOSTILE TERMITE MOUNDS: ADAPTATIONS TO BIOTIC STRESS	Nils Peereboom
P070	GASTROINTESTINAL MICROBIAL ECOLOGY OF PIGLETS POST- WEANING	Sundas Rani
P071	MULTI-KINGDOM MICROBIAL COMMUNITIES IN EARTHWORMS	Rumakanta Sapkota
P072	PSEUDOALTEROMONAS REPRESENTS AN UNLOCKED RESERVOIR OF BIOACTIVE POTENTIAL	Sara Skøtt Paulsen
P073	QUANTIFICATION OF NITROSPIRA CLADE A AND B BY HIGH- RESOLUTION QPCR MELT CURVE ANALYSIS	Dea Petersen
P074	MICROFLORA DANICA	Thomas Jensen
P075	MIDAS 4: A COMPREHENSIVE REFERENCE DATABASE OF MICROBES IN WASTEWATER TREATMENT SYSTEMS ACROSS THE GLOBE	Morten Simonsen Dueholm
P076	DOES GUT PASSAGE HELP KEEP FUNGUS-GROWING TERMITE GARDENS DISEASE FREE?	Leandro Guimaraes
P077	CAMPYLOBACTER PHAGES MIMIC THE HOST DEFENSE STRATEGY BY USING PHASE VARIATION TO CREATE NEW PHENOTYPES WITH MODIFIED RECEPTOR BINDING PROTEINS	Martine Sørensen
P078	DECHLOROMONAS: TO BE OR NOT TO BE A PAO? THAT IS THE QUESTION!	Jette Fischer Petersen
P079	DO BACTERIOPHAGES POSE A PROBLEM FOR MICROBIAL BIOREMEDIATION?	Mikkel Pedersen
P080	PROSPECTIVE EMERGENT PROPERTIES OF MICROBIOME SELECTION IN SOCIALLY COMPLEX HOSTS	Veronica Sinotte
Microbial p	physiology and cultivation	
P081	SYNERGY AT WORK – CO-CULTIVATION OF LACTOBACILLUS BREVIS AND AN ENGINEERED LACTOCOCCUS LACTIS STRAIN FOR SUPERIOR PRODUCTION OF 2-BUTANOL	Mette J. Mar
P082	RED LIGHT ENHANCES GROWTH OF NEUROSPORA CRASSA	Thomas Jan Solgaard
P083	THE OXYGEN CONSUMPTION RATE OF CABLE BACTERIA	Stefano Scilipoti
P084	DEEP PURPLE: THE BIOLOGICAL DARKENING OF THE GREENLAND ICE SHEET	Laura Halbach
P085	EFFICIENT MEDIA FOR HIGH PRODUCTION OF MICROBIAL LIPASE FROM BACILLUS SUBTILIS (BSK-L) USING RESPONSE SURFACE METHODOLOGY FOR ENANTIOPURE SYNTHESIS OF DRUG MOLECULES	Indu Bhushan Sharma
P086	(P)PPGPP REGULATES A BACTERIAL NUCLEOSIDASE BY AN ALLOSTERIC TWO-DOMAIN SWITCH	Yong Zhang

Poster no.	Title	Presenter
P087	IDENTIFICATION AND CHARACTERIZATION OF A NOVEL SIGNALING MOLECULE IN SALMONELLA TYPHIMURIUM	Lotte Jelsbak
P088	BACILLUS SUBTILIS PERSISTENCE AND SECONDARY METABOLITE PRODUCTION IN ARTIFICIAL SOIL	Carlos N. Lozano-Andrade
P089	DOMAIN ANALYSIS OF THE CELL WALL PROTEINASE, LACTOCEPIN, OF LACTOCOCCUS LACTIS	Ida Nynne Laforce
P090	FIRST REPORT OF WHITE LEAF DISEASE ON RICE CAUSED BY METHYLOBACTERIUM IN VIETNAM	Trinh Anh Khoa Lai
P091	TEMPERATURE SENSITIVITY OF OSMOADAPTATION SYSTEMS IN RESTING CELLS PREPARED FROM MARINE VIBRIO SP.	Yue Yin
P092	TEMPERATURE SENSITIVITY OF OSMOADAPTATION SYSTEMS IN RESTING CELLS PREPARED FROM MARINE VIBRIO SP.	Yue Yin
P093	DETERMINANTS OF METABOLIC ACTIVITY AND BIOFILM AGGREGATE SIZES AND -DISTRIBUTION IN A NEW IN VIVO- LIKE BIOFILM MODEL	Kasper Nørskov Kragh
P094	PHYSIOLOGICAL RESPONSES TOWARDS PERTURBATION OF INTRACELLULAR ATP AND ENGINEERING OF SACCHAROPOLYSPORA ERYTHRAEA FOR ENHANCED PRODUCTION OF ERYTHROMYCIN AND REDUCTION OF A REDDISH PIGMENT	Xiaobo Li
P095	ISOLATION OF MICROPOLLUTANT DEGRADING MICROBES FROM PHARMACEUTICAL SPIKED MOVING BED BIOFILM REACTORS	Joseph Donald Martin
Other		
P096	BACTERIAL LIFESTYLES IN PREFERENTIAL FLOW PATHS OF A CLAYEY TILL	Frederik Bak
P097	EFFECT OF -HEMOLYSIN PRODUCING E. COLI IN TWO DIFFERENT MICE STRAINS/ BREADS IN A DSS MODEL TO STUDY IBD	Hengameh Chloe Mirsepasi-Lauridsen
P098	EXPLORING ENVIRONMENTAL SOURCES OF ARCHAEAL LIPIDS FOR IMPROVING LIPOSOMES FOR ORAL DRUG DELIVERY	Mette Sloth Bohsen
P099	MICROBIAL CONSORTIUM INVOLVED IN PLANT-MICROBE INTERACTIONS BENEFITS DROUGHT PLANTS AND THEIR EFFECTS ON PLANT GROWTH	Nan Yang
P100	IMMOBILIZATION OF MICROBIAL HEPARINASE ENHANCED THE PRODUCTION OF LARGE HEPARIN OLIGOSACCHARIDES	Indu Bhushan Sharma
P101	ONE SIZE DOES NOT FIT ALL; THE GAP BETWEEN STANDARDIZED IN VITRO BIOFILM-INFECTED WOUND MODELS AND IN VIVO CLINICAL SETTINGS	Ida Clement Thaarup
P102	GROWTH ON CHITIN ALTERS THE METABOLOME OF THE MARINE PSEUDALTEROMONAS. RUBRA \$4059	Xiyan Wang
		Meiyao Che
P103	IDENTIFICATION OF AN INCK PLASMID ENCODING ESC BY BLACMY-2 IN ESCHERICHIA COLI ISOLATED FROM POULTRY IN DENMARK	

FEMS a

SAVE THE DATE 11-15 July 2021

9th Congress of European Microbiologists Hamburg · Germany

www.fems2021.org

Copenhagen Biotech Supply

NEW! VeriFi Polymerase a 3-in-1 high fidelity enzyme from PCR Biosystems

Long: get improved PCR success rates with complex genomic templates Hot: denature up to 100°C to better separate your GC-rich sequences Faithful: achieve 100x higher fidelity than Taq DNA polymerase

We distribute the following brands:

- Alpha Biosciences
- American Radiolabeled Chemicals
- BIORON life science and diagnostics
- CHROMagar
- Omni International
- PCR Biosystems

Order free samples today!

2nd International Conference on Microbial Food & Feed Ingredients

Abstract submission open now Deadline 1 December 2019

Main topics

Microbiome/Animal & Human health
Pro-prebiotics and the microbiome
Enrichment of plantbased foods via fermentation
Enzyme for food and feed applications
Future trends & regulatory aspects
Metabolic models
Microbially derived bioactive compounds
Whole genome sequencing
Yeast

The Danish Microbiological Society Annual Congress 2020

SAVE THE DATE 9 NOVEMBER 2020

EIGTVEDS PAKHUS COPENHAGEN · DENMARK

www.miffi.org #MIFFI2020

Save the Date 15 - 17 April 2020 Copenhagen · Denmark

www.dmselskab.dk

Thank you to our sponsors!

Gold sponsors

www.dmselskab.dk

facebook.com/DanishMicrobiologicalSociety #DMS2019